I wish to prove that for any coprime (and positive) Pythagorean triple $(x,y,z)$, where $x$ is even, $x+z$ is always a square number.
By inspection, this appears true; $(3,4,5)$ gives $9$, $(5,12,13)$ gives $25$, $(8,15,17)$ gives $25$, $(7,24,25)$ gives $49$ et cetera. Yet I am stuck on the proof.
I do not know the original source of the problem.
Given $$A=m^2-n^2\quad B=2mn\quad C=m^2+n^2$$
$$C-B=m^2-2mn+n^2=(m-n)^2$$ $$B+C=m^2+2mn+n^2=(m+n)^2$$
– poetasis Jul 07 '19 at 16:54An alternate formula generates all Pythagorean triples where the greatest common divisor of $A,B,C$ is an odd square, includes all primitives and always generates side-$B$ even. $$A=(2n-1)^2+2(2n-1)k\qquad B=2(2n-1)k+2k^2\qquad C=(2n-1)^2+2(2n-1)k+2k^2$$ If we add $B$ and $C$, we get
$$[2(2n-1)k+2k^2]+[(2n-1)^2+2(2n-1)k+2k^2]\quad =2(2n-1)^2+4(2n-1)k+k^2\quad =(2(2n-1)+k)^2$$
– poetasis Mar 14 '20 at 18:09