How will we add this series? Any simple process? This is one of the equation derived from the equation to find intesity of ray at any particular point in Fraunhofer diffraction. I think this can be solved using simple series but my teacher told any process involving Imaginary part iota, which I couldn't understand.
2 Answers
Find the value of $\sum_{k=0}^{n-1}\sin(a+kt)$.
$$\begin{align}\sum_{k=0}^{n-1}\sin(a+kt)=\sum_{k=0}^{n-1}\frac{e^{i(a+kt)}-e^{-i(a+kt)}}{2i}\\=\sum_{k=0}^{n-1}\frac{e^{i(a+kt)}}{2i}-\sum_{k=0}^{n-1}\frac{e^{-i(a+kt)}}{2i}\\=\frac{e^{ia}}{2i}\sum_{k=0}^{n-1}e^{ikt}-\frac{e^{-ia}}{2i}\sum_{k=0}^{n-1}e^{-ikt}\\=\frac{e^{ia}}{2i}\frac{1-e^{int}}{1-e^{it}}-\frac{e^{-ia}}{2i}\frac{1-e^{-int}}{1-e^{-it}}\end{align}$$
Can you do next steps?

- 5,381
The hint.
Thy to multiply it by $2\sin\frac{\Delta\theta}{2}$ and use $$2\sin\alpha\sin\beta=\cos(\alpha-\beta)-\cos(\alpha+\beta).$$
\begin{align} & \sin\omega t + \sin(\omega t+∆θ) + \sin(ωt+2∆θ) + \cdots + \sin(ωt+(n-1)∆θ) \\[10pt] = {} & \frac{2\sin\frac{\Delta\theta}{2}\sin\omega t +2\sin\frac{\Delta\theta}{2} \sin(\omega t+∆θ)+ \cdots + 2\sin\frac{\Delta\theta}{2}\sin(ωt+(n-1)∆θ)}{2\sin\frac{\Delta\theta}{2}} \\[10pt] = {} & \tfrac{\cos\left(\omega t-\frac{\Delta\theta}{2}\right)-\cos\left(\omega t + \frac{\Delta\theta}{2}\right) +\cos\left(\omega t+\frac{\Delta\theta}{2} \right) - \cos\left(\omega t+\frac{3\Delta\theta}{2} \right) + \cdots+\cos\left(\omega t+\left(n-\frac{3}{2}\right)\Delta\theta\right)-\cos\left(\omega t+\left(n-\frac{1}{2}\Delta\right)\theta\right)}{2\sin\frac{\Delta\theta}{2}} \\[10pt] = {} & \frac{\cos\left(\omega t-\frac{\Delta\theta}{2}\right)-\cos\left(\omega t + \left(n-\frac{1}{2}\right)\Delta\theta\right)}{2\sin\frac{\Delta\theta}{2}} \end{align}

- 194,933
-
Can you please solve it for me? – Ayush Bhardwaj Aug 24 '17 at 16:46
-
this is always been my favourite solution! – MAN-MADE Aug 24 '17 at 16:56
-
Yes, I also like it! @Ayush Bhardwaj I added something. – Michael Rozenberg Aug 24 '17 at 17:03
-
' Thanks, That's very helpful and Simple explanations as well! ' – Ayush Bhardwaj Aug 24 '17 at 17:55
-
@Ayush Bhardwaj You are welcome! – Michael Rozenberg Aug 24 '17 at 17:59