I found the solution of the exercise, but I can't figure out how to computing the mean limit.
First, compute the stationary distribution:
- $\pi_0, \pi_2$ are undefined because states $0$ ad $2$ are periodic
for $\pi_1, \pi_3, \pi_4$ we can use the definition of stationary distribution:
$$\sum_i \pi_i=1$$
$$\pi_j = \sum_{j \neq i} p_{i,j}\pi_i$$
$$\pi_i \geq 0$$
therefore:
$\begin{cases}
\pi_1 + \pi_4 = 1\\
\pi_1 = 0.3\pi_1 + 0.7\pi_4\end{cases} \implies \pi_1 = \pi_4=0.5$
$\pi_3 = p_{3,0} · \pi_0 + p_{3,1} · \pi_1 + p_{3,2} · \pi_2 + p_{3,4} · \pi_4$
.
Solution to $\lim \limits_{n\to \infty} P^n$
.
Entries $ij$ of the matrix $\lim \limits_{n\to \infty} P^n$ will be $\pi_i u_{i, j}$, where $u_{i, j}$ is the probability to be absorbed in the class of state $j$, starting from $i$.
Using first step analysis we found:
$$
\begin{cases}
u_{0,0} = u_{0,2} = u_{2,0} = u_{2,2} = 0 \\
u_{1,1} = u_{1,4} = u_{4,1} = u_{4,4} = 0.5\\
u_{3,1} = u_{3,4} = \sum_i p_{3,i} u_{i,1} = 0.2 u_{3,1} + 0.4 u_{1, 1} \implies u_{3, 1} = 0.25 \\
\end{cases}
$$
All others absorbig probabilities are $0$.
Signing with a '-' the undefined probabilities:
$$
\lim \limits_{n\to \infty} P^n =
\begin{pmatrix}
- & 0 & - & 0 & 0\\
0 & 0.5 & 0 & 0 & 0.5 \\
- & 0 & - & 0 & 0 \\
- & 0.25 & - & 0 & 0.25 \\
0 & 0.5 & 0 & 0 & 0.5 \\
\end{pmatrix}$$
.
Solution to $\lim \limits_{n\to \infty} \frac1n \sum_{k=1}^n P^k$
.
It is the following but I can't figure out why:
$$
\lim \limits_{n\to \infty} \frac1n \sum_{k=1}^n P^k =
\begin{pmatrix}
0.5 & 0 & 0.5 & 0 & 0\\
- & - & - & - & - \\
0.5 & 0 & 0.5 & 0 & 0 \\
0.25 & 0.25 & 0.25 & 0 & 0.25 \\
- & - & - & - & - \\
\end{pmatrix}
$$
Someone can complete this answer?