I would like to prove that the function
$$f(x) = \left (\frac{2+\cos x}{3}\right )^{x^4}$$ is Lebesgue-integrable on $\mathbb R. $ Namely I would like to show that,
$$\int_{\Bbb R} \left|f(x)\right|dx<\infty$$
My answer: \begin{split}\int_{\Bbb R}\left|f(x)\right|dx&=&2\sum_{n=0}^{\infty}\int_{2n\pi}^{(2n+2)\pi}\left (\frac{2+\cos (x)}{3}\right )^{x^4}\,dx\\ &=&2\sum_{n=0}^{\infty}\int_0^{2\pi}\left (\frac{2+\cos (x+2n\pi)}{3}\right )^{(x+2n\pi)^4}\,dx\\ &\leq& 2\sum_{n=0}^{\infty}\int_0^{2\pi}\left (\frac{2+\cos (x)}{3}\right )^{(2n\pi)^4}\,dx<\infty?. \end{split}