I have been thinking about the intuition of stopping times and stopping time $\sigma$-algebras. While I feel more or less comfortable with the former notion, I would like to get more insight in the latter. Having read different intuitive explanations, I tried to come up with the following interpretations which I would like to be verified.
Let $\mathbb{F} = {(\mathcal{F}_n)}_{n \in \mathbb{N}_0}$ be a filtration in $(\Omega, \mathcal{F})$. A random variable $\tau : \Omega \rightarrow \mathbb{N}_0 \cup \{ \infty \}$ is called a stopping time if $\{ \tau \leq n \} \in \mathcal{F}_n$ for all $n \in \mathbb{N}_0$.
It can easily be shown that $\{ \tau \leq n \} \in \mathcal{F}_n \quad \forall n \in \mathbb{N}_0 \iff \{ \tau = n \} \in \mathcal{F}_n \quad \forall n \in \mathbb{N}_0$.
Interpretation I have come up with:
The relation $\{ \tau \leq n \}\in \mathcal{F}_n$ means that all the elementary events $\omega$ in the case of which I stop before time $n$ or at $n$ comprise an event in $\mathcal{F}_n$. This means, in particular, that at time $n$, having observed the current event I am at, I know precisely whether I have or whether I have not stopped before time $n$ or at $n$.
For example, suppose that at time $n$ I am on some event $A \in \mathcal{F}_n$. Two mutually exclusive cases are possible:
- $A \cap \{ \tau \leq n \} = \emptyset\in \mathcal{F}_t$, so the decision to stop before time $t$ or at $t$ has not been made.
- $A \cap \{ \tau \leq n \} \neq \emptyset$. Additionally, $A \cap \{ \tau \leq n \} \in \mathcal{F}_n$ so $A \cap \{ \tau \leq n \}$ is also an event which I can distinguish at time $n$. So depending on whether I am on $A \cap \{ \tau \leq n \}$ or on $(A \setminus A \cap \{ \tau \leq n \})$, I can tell whether I have or whether I have not stopped before time $n$ or at $n$.
A similar interpretation and example can be given for the relation $\{ \tau = n \} \in \mathcal{F}_n$.
Now consider the stopping time $\sigma$-algebra: $$ \mathcal{F}_{\tau} := \{ A \in \mathcal{F}: A \cap \{ \tau \leq n\} \in \mathcal{F}_n \quad \forall n \in \mathbb{N}_0\} $$ It can indeed be verified that the above family is a $\sigma$-algebra and that $$A \in \mathcal{F}_{\tau} \iff A \cap \{ \tau = n\} \in \mathcal{F}_n \quad \forall n \in \mathbb{N}_0.$$
In literature, usually, $\mathcal{F}_{\tau}$ is described as the $\sigma$-algebra of the events observed up to the stopping the $\tau$, in analogy to $\mathcal{F}_n$, which represents the events observable up to time n.
Interpretation I have come up with:
- Suppose that at some arbitrary but fixed time $n$ the event $\{ \tau \leq n \} \in \mathcal{F}_{n}$ has occurred which means that there has been a decision to stop before time $n$ or at $n$. Then for every $A \in \mathcal{F}_{\tau}$ I can tell whether $A$ has occurred or not depending on whether I am at the event $A \cap \{ \tau \leq n\} \in \mathcal{F}_{n}$ or not. So the events in $\mathcal{F}_{\tau}$ are those for which I can tell whether they have occurred or not provided that the event $\{\tau \leq n \}$ for some $n \in \mathbb{N}_0$ has occurred (i.e. there has been a decision to stop).
- Conversely, take any $A \in \mathcal{F}_{\tau}$ and arbitrary but fixed time $n$. Further assume that event $A$ has occured at time t, in the sense that some $B \in \mathcal{F}_n$ has occured with $B \subset A$. So I can tell whether I have or whether I have not stopped before time $n$ or at $n$ depending on whether the event $B \cap (A \cap \{ \tau \leq n \}) \in \mathcal{F}_n$ has occurred or not. (However I think this second point is irrelevant since at every time $n$ I know whether the event $\{\tau \leq n\} \in \mathcal{F}_n$ has occurred or not.)
I feel more or less assured regarding the first interpretation for the stopping time however I am unsure of the interpretation for the $\sigma$-algebra, namely, whether it actually corresponds to the description stated earlier:
$\mathcal{F}_{\tau}$ is the $\sigma$-algebra of the events observed up to the stopping time $\tau$.
So here are my questions:
- Do you agree with the two interpretations?
- Can you add something to make them better (especially to that of the $\sigma$-algebra)?
- Can you come up with different interpretations?