0

Prove that for every integer $n \geq 0$, the number $4^{2n+1}+3^{n+2}$ is a multiple of 13.

Ross Millikan
  • 374,822
Shiny
  • 11

1 Answers1

1

HINT: we have $$4^{2n+1}+3^{n+2}=16^n\cdot 4+3^n\cdot 9\equiv 3^n\cdot 4+3^n\cdot 9\equiv 3^n\cdot 13$$