The question:
Find the sum of the first $n$ terms of $$\sum^n_{k=1}k^3$$
[Hint: consider $(k+1)^4-k^4$]
[Answer: $\frac{1}{4}n^2(n+1)^2$]
My solution:
$$\begin{align}
\sum^n_{k=1}k^3&=1^3+2^3+3^3+4^3+\cdots+(n-1)^3+n^3\\
&=\frac{n}{2}[\text{first term} + \text{last term}]\\
&=\frac{n(1^3+n^3)}{2}
\end{align}$$
What am I doing wrong?