-2

I want to have a short way to find the sum of $(1+2+3+4+5+6+7+8+9+10+11)$, so is here any short way to sum these numbers? thanks in advance

Davood
  • 4,223

2 Answers2

3

There is a very famous identity.

$$1+2+3+...+n=\frac{n(n+1)}{2}$$

Your case would be $n=11$.

As a simple proof, you can consider twice the value, and group the terms:

$$2[1+2+...+(n-1)+n]=\begin{matrix} &[1&+&2&+&...&+&(n-1)&+&n]\\ +&[1&+&2&+&...&+&(n-1)&+&n] \end{matrix}$$

Which we can rearrange.

$$2[1+2+...+(n-1)+n]=\begin{matrix} &[1&+&2&+&...&+&(n-1)&+&n]\\ +&[n&+&(n-1)&+&...&+&2&+&1] \end{matrix}$$

Now, we can add elements vertically, noticing that each sum is $n+1$

$$2[1+2+...+(n-1)+n]=[(n+1)+(n+1)+...+(n+1)]$$

since there are n terms:

$$2[1+2+...+(n-1)+n]=n(n+1)$$

$$1+2+...+(n-1)+n=\frac{n(n+1)}2$$

Kajelad
  • 14,951
2

One time write the numbers by the usuall order and one time in the reverse order; and then add them together :

$$\underbrace {\begin {array} {ccccccccccc} 1&2&3&4&5&6&7&8&9&10&11 \\ 11&10&9&8&7&6&5&4&3&2&1 \\ \hline 12&12&12&12&12&12&12&12&12&12&12& \\ \end {array}}_{11-times}$$


So "twice your sum" is equal to $11.12$;

So "your sum" is equal to $\dfrac{11.12}{2}$.

Davood
  • 4,223