a.) Show that if $A=A^T$ is a symmetric matrix, then $A\mathbf{x}=\mathbf{b}$ has a solution iff b is orthogonal to $\ker A$.
b.) Prove that if $K$ is a positive semi-definite matrix and $\mathbf{f}\notin \operatorname{rng}K$, then the quadratic function $$p(\mathbf{x}) = \mathbf{x}^\mathrm{T}K\mathbf{x} -2\mathbf{x}^\mathrm{T}\mathbf{f} + c$$ has no minimum value.
c.) Suppose $\{\mathbf{v_1},\ \cdots,\ \mathbf{v_n}\}$ span a subspace $V \subset \mathbb{R}^m$. Prove that $\mathbf{w}$ is orthogonal to $V$ iff $\mathbf{w}\in \operatorname{coker}A$ where $A=\begin{pmatrix}\mathbf{v_1} & \mathbf{v_2} & \cdots & \mathbf{v_n}\end{pmatrix}$ is the matrix with the indicated columns.
My attempt:
a.) We know that $A=A^\mathrm{T}$, then a vector $\mathbf{x}\in \mathbb{R}^n$ lies in $\ker A$ iff $A\mathbf{x} = \mathbf{0}$.
By matrix multiplication we know that the $i^{\text{th}}$ entry of $A\mathbf{x}$ equals the vector product of the $i^{\text{th}}$ row $\mathbf{r_i}^T$ of $A$ and $\mathbf{x}$, hence $\mathbf{r_i}^{T}\cdot \mathbf{x} = \mathbf{r_i} \cdot \mathbf{x} = 0$ iff $\mathbf{x}$ is orthogonal to $\mathbf{r_i}$.
Therefore $\mathbf{x}\in \ker A$ iff $\mathbf{x}$ is orthogonal to all the rows of $A$. Thus $A\mathbf{x} = \mathbf{b}$ has a solution iff $\mathbf{b}$ is orthogonal to $\ker A$. Is this correct?
b.) I do not know how to do this
c.) In this do I have to prove that $\mathbf{w} \in \operatorname{coker}A$ is orthogonal to the range of $A$? I am not exactly sure what they are asking.