Show that $ \left( 1 + \frac{x}{n}\right)^n$ is uniformly convergent on $S=[0,1]$.
Given $f_n(x)=\left( 1 + \frac{x}{n}\right)^n$ is a sequence of bounded function on $[0,1]$ and $f:S \rightarrow \mathbb R$ a bounded function , then $f_n(x)$ converges uniformly to $f$ iff
$$\lim\limits_{n \rightarrow \infty} ||f_n - f|| = \lim\limits_{n \rightarrow \infty}\left(\sup |f_n(x) - f(x)| \right)= 0$$
As $$f(x) = \lim\limits_{n \rightarrow \infty} \left( 1 + \frac{x}{n}\right)^n = e^x$$
We have
$$\begin{split} \lim\limits_{n \rightarrow \infty} \left\|\left( 1 + \frac{x}{n} \right)^n - e^x\right\| &= \lim\limits_{n \rightarrow \infty} \left|\sup_{x \in S}\left[\left( 1 + \frac{x}{n}\right)^n - e^x \right ]\right|\\ &= \lim\limits_{n \rightarrow \infty} \left|\left( 1 + \frac{1}{n} \right)^n - e^1 \right|\\ &= \lim\limits_{n \rightarrow \infty} |e-e| \\ &= 0 \end{split} $$
I am new to sequence. Is this appropriate to show convergence?
Going back to the definition, How can I show that:
"$f_n(x)=\left( 1 + \frac{x}{n}\right)^n$ is a sequence of bounded function on $[0,1]$"?
$f:S \rightarrow \mathbb R$ a bounded function?