I've the proof of the following formulae.I've someother problem,i've spent a great amount time in remebering,but every time i commit mistakes while doing the problems of inverse trigonometry.I wanted to know if there is some quick approach of learning the following formulae especially $sin^{-1}x-sin^{-1}y$.
($I$)$$tan^{-1}x+tan^{-1}y = \begin{cases}tan^{-1} (\frac{x+y}{1-xy}), & \text{if $xy<1$ } \\[2ex] \pi +tan^{-1} (\frac{x+y}{1-xy}), & \text{if $x>0,y<0$ and $xy>1$ } \\[3ex] -\pi +tan^{-1} (\frac{x+y}{1-xy}), & \text{if $x<0,y<0$ and $xy<1$ } \end{cases}$$
($II$)$$tan^{-1}x-tan^{-1}y = \begin{cases}tan^{-1} (\frac{x-y}{1+xy}), & \text{if $xy>-1$ } \\[2ex] \pi +tan^{-1} (\frac{x-y}{1+xy}), & \text{if $x>0,y<0$ and $xy<-1$ } \\[3ex] -\pi +tan^{-1} (\frac{x-y}{1+xy}), & \text{if $x<0,y<0$ and $xy<-1$ } \end{cases}$$
($III$)$$sin^{-1}x-sin^{-1}y = \begin{cases}sin^{-1}(x\sqrt {1-y^2}-y\sqrt {1-x^2}), & \text{if $-1\leq x,y \leq1$ and $x^2+y^2\leq$1 or if $xy>0$ and $x^2+y^2>1$} \\[2ex] \pi +sin^{-1}(x\sqrt {1-y^2}-y\sqrt {1-x^2}), & \text{if $0< x \leq1$ and $-1\leq y\leq$0 and $x^2+y^2>1$}\\[3ex] -\pi +sin^{-1}(x\sqrt {1-y^2}-y\sqrt {1-x^2}), & \text{if $-1\leq x<0$, $0< y\leq$1 and $x^2+y^2>1$}\end{cases}$$
($IV$)$$sin^{-1}x+sin^{-1}y = \begin{cases}sin^{-1}(x\sqrt {1-y^2}+y\sqrt {1-x^2}), & \text{if $-1\leq x,y \leq1$ and $x^2+y^2\leq$1 or if $xy<0$ and $x^2+y^2>1$} \\[2ex] \pi +sin^{-1}(x\sqrt {1-y^2}+y\sqrt {1-x^2}), & \text{if $0< x,y \leq1$ and $x^2+y^2>1$}\\[3ex] -\pi +sin^{-1}(x\sqrt {1-y^2}+y\sqrt {1-x^2}), & \text{if $-1\leq x,y<0$ and $x^2+y^2>1$}\end{cases}$$
($V$) $$2sin^{-1}x = \begin{cases}sin^{-1} (2x\sqrt{1-x^2}), & \text{if $\frac{-1}{\sqrt 2}\leq x \leq \frac{1}{\sqrt 2}$ } \\[2ex] \pi -sin^{-1} (2x\sqrt{1-x^2}), & \text{if $\frac{1}{\sqrt 2}\leq x \leq1$ } \\[3ex] -\pi -sin^{-1} (2x\sqrt{1-x^2}), & \text{if $-1\leq x \leq \frac{-1}{\sqrt 2}$ } \end{cases}$$
($VI$)$$3sin^{-1}x = \begin{cases}sin^{-1} (3x-4x^3), & \text{if $\frac{-1}{ 2}\leq x \leq \frac{1}{ 2}$ } \\[2ex] \pi -sin^{-1} (3x-4x^3), & \text{if $\frac{1}{ 2}< x \leq1$ } \\[3ex] -\pi -sin^{-1} (3x-4x^3), & \text{if $-1\leq x < \frac{-1}{ 2}$ } \end{cases}$$
($VII$)$$2cos^{-1}x = \begin{cases}cos^{-1} (2x^2-1), & \text{if $0\leq x \leq1$ } \\[2ex] 2\pi -cos^{-1} (2x^2-1), & \text{if $-1\leq x\leq 0$ } \\[3ex] \end{cases}$$
($VIII$)$$3cos^{-1}x = \begin{cases}cos^{-1} (4x^3-3x), & \text{if $\frac{1}{ 2}\leq x \leq 1$ } \\[2ex] 2\pi -cos^{-1} (4x^3-3x), & \text{if $\frac{-1}{ 2}< x \leq \frac{1}{2}$ } \\[3ex] 2\pi +cos^{-1} (4x^3-3x), & \text{if $-1\leq x < \frac{-1}{ 2}$ } \end{cases}$$
($IX$)$$3tan^{-1}x = \begin{cases}tan^{-1}(\frac{3x-x^3}{1-3x^2}) , & \text{if $\frac{-1}{ \sqrt 3}\leq x \leq \frac{1}{\sqrt 3}$ } \\[2ex] \pi +tan^{-1}(\frac{3x-x^3}{1-3x^2}), & \text{if $ x >\frac{1}{\sqrt 3}$ } \\[3ex] -\pi +tan^{-1}(\frac{3x-x^3}{1-3x^2}), & \text{if $x < \frac{-1}{ \sqrt 3}$ } \end{cases}$$