We will show by induction that $$\varphi\left(\frac{a}{2^n}x+\left(1-\frac{a}{2^n}\right)y\right)\leq \frac{a}{2^n}\varphi(x)+\left(1-\frac{a}{2^n}\right)\varphi(y)$$ for all integers $0\leq a\leq 2^n$. Note that this statement is given as true for $n = 1$. If the statement is true for $n-1$, then as $$\frac{a}{2^n}x+\left(1-\frac{a}{2^n}\right)y = \frac{1}{2}\left[\left(\frac{\lfloor a/2\rfloor}{2^{n-1}}x+\left(1-\frac{\lfloor a/2\rfloor}{2^{n-1}}\right)y\right)+\left(\frac{\lceil a/2\rceil}{2^{n-1}}x+\left(1-\frac{\lceil a/2\rceil}{2^{n-1}}\right)y\right)\right]$$ considering that $a = \lfloor a/2\rfloor+\lceil a/2\rceil$ for all integers $a$, we have that \begin{align*} \varphi\left(\frac{a}{2^n}x+\left(1-\frac{a}{2^n}\right)y\right) &\leq \frac{1}{2}\varphi\left(\frac{\lfloor a/2\rfloor}{2^{n-1}}x+\left(1-\frac{\lfloor a/2\rfloor}{2^{n-1}}\right)y\right)+\frac{1}{2}\varphi\left(\frac{\lceil a/2\rceil}{2^{n-1}}x+\left(1-\frac{\lceil a/2\rceil}{2^{n-1}}\right)y\right) \\ &\leq \frac{\lfloor a/2\rfloor+\lceil a/2\rceil}{2^n}\varphi(x)+\left(1-\frac{\lfloor a/2\rfloor+\lceil a/2\rceil}{2^n}\right)\varphi(y) \\ &= \frac{a}{2^n}\varphi(x)+\left(1-\frac{a}{2^n}\right)\varphi(y) \end{align*} so we have our induction. Now, consider that for $\lambda\in (0, 1)$, there is a sequence $(a_n)_{n=1}^{\infty}$ such that $0\leq a_n\leq 2^n$ and $\frac{a_n}{2^n}\to \lambda$. Then, $$\frac{a_n}{2^n}x+\left(1-\frac{a_n}{2^n}\right)y\to \lambda x+(1-\lambda)y$$ and $$\frac{a_n}{2^n}\varphi(x)+\left(1-\frac{a_n}{2^n}\right)\varphi(y)\to \lambda\varphi(x)+(1-\lambda)\varphi(y)$$ so as the inequality we proved by induction holds for all $a_n$ and as $\varphi$ is continuous, we have \begin{align*} \varphi(\lambda x+(1-\lambda)y) &= \lim_{n\to \infty} \varphi\left(\frac{a_n}{2^n}x+\left(1-\frac{a_n}{2^n}\right)y\right) \\ &\leq \lim_{n\to \infty} \frac{a_n}{2^n}\varphi(x)+\left(1-\frac{a_n}{2^n}\right)\varphi(y) \\ &= \lambda\varphi(x)+(1-\lambda)\varphi(y) \end{align*} and therefore $\varphi$ is convex.