The probability of getting $s$ as the sum of rolling $m$ times one die with $t$-faces (or rolling $m$ of such dice)
is given by the number of ways to get that sum, divided by number of different $m$-tuples.
That is we consider the "times" (dice) labelled, both for counting the ways to give $s$ and for the total of possible outcomes $t^m$.
Let's call it $P(s,m;t)$. That is the same either for player $A$ and $B$.
Now consider the sequence of the sums $s_{1},s{2},\cdots$.
We must have
$$
\left\{ \matrix{
1 \le s_{\,1} \le t \hfill \cr
s_{\,1} \le s_{\,2} \le t\,s_{\,1} \quad \Rightarrow \quad 1 \le s_{\,2} \le t^{\,2} \hfill \cr
\quad \vdots \hfill \cr
s_{\,n - 1} \le s_{\,n} \le t\,s_{\,n - 1} \quad \Rightarrow \quad 1 \le s_{\,n} \le t^{\,n} \hfill \cr} \right.
$$
Calling $q$ the limit you put at $1000$, you are asking which is the probability that
$$
s_{\,2n} < q \le s_{\,2n + 1}
$$
versus the viceversa.
The game is a Markov chain, with states $1 \cdots q$ , state $q$ an absorbing barrier,
and transition probability $P(s_{n+1},\, s_{n};\, t)$.
We shall then compute the probability of reaching the barrier in $2n+1$ vs. $2n$ steps.
Concerning $P(s,\,m;\,t)$, in this other post
it is extensively explained that, calling
$$
\eqalign{
& N_b (s,r,m) = {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{
{\rm 0} \le {\rm integer}\;x_{\,j} \le r \hfill \cr
x_{\,1} + x_{\,2} + \; \cdots \; + x_{\,m} = s \hfill \cr} \right. = \cr
& = {\rm No}{\rm .}\,{\rm of}\,{\rm solutions}\,{\rm to}\;\left\{ \matrix{
{\rm 1} \le {\rm integer}\;x_{\,j} \le r + 1 \hfill \cr
x_{\,1} + x_{\,2} + \; \cdots \; + x_{\,m} = s + m \hfill \cr} \right. \cr}
$$
it is expressible as
$$
N_b (s,r,m)\quad \left| {\;0 \leqslant \text{integers }s,m,r} \right.\quad = \sum\limits_{\left( {0\, \leqslant } \right)\,\,k\,\,\left( { \leqslant \,\frac{s}
{r}\, \leqslant \,m} \right)} {\left( { - 1} \right)^k \left( \begin{gathered}
m \hfill \\
k \hfill \\
\end{gathered} \right)\left( \begin{gathered}
s + m - 1 - k\left( {r + 1} \right) \\
s - k\left( {r + 1} \right) \\
\end{gathered} \right)}
$$
Thus
$$
\eqalign{
& P(s,\,m;\,t)\quad \left| {\;1 \le t} \right.\quad = {1 \over {t^{\,m} }}N_b (s - m,t - 1,m) = \cr
& = {1 \over {t^{\,m} }}\sum\limits_{\left( {0\, \le } \right)\,\,k\,\,\left( { \le \,{{s - m} \over r}\, \le \,m} \right)} {\left( { - 1} \right)^k \left( \matrix{
m \hfill \cr
k \hfill \cr} \right)\left( \matrix{
s - 1 - k\,t \cr
s - m - k\,t \cr} \right)} \cr}
$$
Given the nature of the process and the formulation for $P$, I do not see
that the answer might be formulated analytically, not even in a asymptotic
way.