$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
I & \equiv \int_{0}^{1}{\ln^{3}\pars{1 - x} \over x}\,\dd x
\,\,\,\stackrel{x\ \mapsto\ 1 - x}{=}\,\,\,
\int_{0}^{1}{\ln^{3}\pars{x} \over 1 - x}\,\dd x
\\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\,
\int_{0}^{1}\ln\pars{1 - x}\bracks{3\ln^{2}\pars{x}
\,{1 \over x}}\dd x =
-3\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln^{2}\pars{x}
\,\dd x
\\[5mm] &\ \pars{~\substack{\ds{\mrm{Li}_{s}:\ PolyLogarithm\ Function\,,\quad \mrm{Li}_{s}\pars{0} = 0}\\[2mm]
\ds{\mrm{Li}_{s + 1}'\pars{z} = {\mrm{Li}_{s}\pars{z} \over z}\,,\quad\mrm{Li}_{1}\pars{z} = -\ln\pars{1 - z}}}~}
\\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\,
3\int_{0}^{1}\mrm{Li}_{2}\pars{x}\bracks{2\ln\pars{x}\,{1 \over x}}\,\dd x =
6\int_{0}^{1}\mrm{Li}_{3}'\pars{x}\ln\pars{x}\,\dd x
\\[5mm] & \stackrel{\mrm{IBP}}{=}\,\,\,
-6\int_{0}^{1}\mrm{Li}_{3}\pars{x}\,{1 \over x}\,\dd x
=
-6\int_{0}^{1}\mrm{Li}_{4}'\pars{x}\,\dd x = -6\,\mrm{Li}_{4}\pars{1}
\\[5mm] & =
-6\ \underbrace{\zeta\pars{4}}_{\ds{\pi^{4} \over 90}}
\qquad\qquad\qquad\pars{~\substack{\ds{\zeta:\ Riemann\ Zeta\ Function}\\[2mm]
\ds{\mrm{Li}_{s}\pars{1} = \zeta\pars{s}}}~}
\\[5mm] & =
\bbx{-\,{\pi^{4} \over 15}} \\ &
\end{align}