The given infinite product equals
$$ P=\exp\sum_{n\geq 1}\left(\frac{\log(4n+1)}{4n+1}-\frac{\log(4n-1)}{4n-1}\right)=\exp\sum_{n\geq 1}\frac{\chi(n)\log(n)}{n}. $$
with $\chi$ being the non-principal Dirichlet's character $\!\!\pmod{4}$.
In compact form, $P=\exp\left(-L'(\chi,1)\right)$. By Frullani's Theorem $\log(n)=\int_{0}^{+\infty}\frac{e^{-x}-e^{-nx}}{x}\,dx$, hence:
$$ P=\exp\left(-L'(\chi,1)\right) = \exp\int_{0}^{+\infty}\left(\frac{\pi}{4}e^{-x}-\arctan e^{-x}\right)\frac{dx}{x} $$
By considering the Taylor series of $\frac{\pi(1-z)}{4}-\arctan(1-z)$ around the origin we may easily derive the approximation $\color{blue}{P\approx 0.82}$. The previous integral representation recalls Binet's second $\log\Gamma$ formula. Indeed, by the Malmsten-Kummer Fourier series, for any $z\in(0,1)$ we have:
$$ \log\Gamma(z) = \left(\tfrac12 - z\right)(\gamma + \log 2) + (1 - z)\ln\pi
- \frac12\log\sin\pi z + \frac{1}{\pi}\sum_{n=1}^\infty \frac{\sin 2\pi n z \cdot\log n} n$$
hence an explicit representation for $P$ can be simply found by plugging in $z=\frac{1}{4}$:
$$\boxed{ P = \color{blue}{\left(\frac{\Gamma\left(\frac{1}{4}\right)^4}{4\pi^3 e^{\gamma}}\right)^{\frac{\pi}{4}}}\approx 0.82456334.}$$