Let us consider a continuous function $y=f(x)$,
The first order derivative of the function $f(x)$ is defined by
$$\frac{d}{dx}f(x) = \lim\limits_{h \to 0} \frac{f(x) - f(x - h)}{h}$$
The second order derivative is
$$ \frac{d^{2}}{dx^{2}}f(x) = \lim\limits_{h \to 0} \frac{f(x) - 2f(x - h) +f(x-2h)}{h^{2}}$$ and $$ \frac{d^{3}}{dx^{3}}f(x) = \lim\limits_{h \to 0} \frac{f(x) - 3f(x - h) +3f(x-2h) - f(x-3h)}{h^{3}},$$
and so son...
Now using same reasoning, by induction how we prove the bellow expression can be used to calculate nth derivative of $f(x)$ ?
$$ \frac{d^{n}}{dx^{n}}f(x) = \lim\limits_{h \to 0} \frac {1}{h^{n}} \sum_{k=0}^{n} (-1)^{k} \binom{n}{k}f(x-kh)$$