Suppose that $S_0$ and A are positive numbers, let $$S_{n+1} = \frac{1}{2}\left(S_n +\frac{A}{S_n}\right)$$ with $n \geq 0 $.
(a)Show that $S_{n+1} \geq \sqrt{A} $ if $n \geq 0$
(b)Show that $S_{n+1} \leq S_n $ , if $n \geq 1$
(c) Show that $s= \lim\limits_{n \rightarrow \infty} S_n$ exists
(d) find s
(a) Show that $S_{n+1} \geq \sqrt{A} $ if $n \geq 0$
Given $$P_n: S_{n+1} = \frac{1}{2}\left(S_n +\frac{A}{S_n}\right) \geq \sqrt{A}$$
$$P_0: S_{1} = \frac{1}{2}\left(S_0 +\frac{A}{S_0}\right) \geq \sqrt{A} $$
We assume that $P_n$ is true
$$P_{n+1}: S_{n+2}= \frac{1}{2}\left(S_{n+1} +\frac{A}{S_{n+1}}\right)$$ by assumption $$S_{n+2}= \frac{1}{2}\left(S_{n+1}\left(1 +\frac{A}{(S_{n+1})^2}\right)\right) \geq \frac{1}{2}\left(\sqrt{A}\left(1 +\frac{A}{(\sqrt{A})^2}\right)\right)$$ $$ S_{n+2}= \frac{1}{2}\left(S_{n+1} +\frac{A}{S_{n+1}}\right) \geq \sqrt{A} $$
It follows that $S_{n+1} \geq \sqrt{A} $
(b) Show that $S_{n+1} \leq S_n $ , if $n \geq 1$
$$S_{n+1} \leq S_n$$ $$\frac{1}{2}\left(S_n +\frac{A}{S_n}\right) \leq S_n $$ Dividing by $S_n$ $$\frac{1}{2}\left(1 +\frac{A}{S_n^2}\right) \leq 1 $$ $$\frac{A}{2S_n^2} \leq \frac{1}{2}$$ $$A \leq S_n^2$$ $$S_n \geq \sqrt{A}$$ As $S_{n+1} \leq S_n$ yields a true statement, it follows $S_{n+1} \leq S_n$ is true.
(c) Show that $s= \lim\limits_{n \rightarrow \infty} S_n$ exists
Since $S_{n+1} \leq S_n$, the sequence is non-increasing,
using the non-increasing theorem stating that
if $\{S_n\}$ is non-increasing then $$\lim\limits_{n \rightarrow > \infty} S_n = \inf\{S_n\} $$
(d) find s
Is the argumentation in (a) and (b) appropriate? Also, I have to admit I m getting less confident in my argumentation (c) and (d). How to proceed in (c) and (d)? Much appreciated for your input or help.