Let $x\in\ell^1$, then $|x(n)|<1$ for $n\geqslant n_0$, hence $|x(n)|^2<|x(n)|$ for these $n$ and this proves that $\ell^1\subset\ell^2$. We have that
$$\lVert x\rVert_2^2=\sum_{j=0}^{+\infty}|x(n)|^2\leqslant\left(\sum_{j=0}^{+\infty}|x(j)|\right)^2=\sum_{j=0}^{+\infty}|x(n)|^2+2\sum_{l\leq k}|x(l)|\cdot |x(k)|,$$
which proves the boundedness of the inclusion.
As the sequences of finite support are dense in $\ell^2$, the image is dense.
$A$ is closed (in $\ell^2$). Indeed, if $x^n\to x$ in $\ell^2$ and $\lVert x^n\rVert_1\leqslant 1$ for all $n$, then for each $n$ and each integer $N$,
$$\sum_{j=0}^N|x_j|\leqslant \sum_{j=0}^N|x_j^n|+\sum_{j=0}^N|x_j-x_j^n|\leqslant 1+\sum_{j=0}^N|x_j-x_j^n|\leqslant 1+\sqrt N\lVert x-x^n\rVert_2.$$
Take the $\lim_{n\to+\infty}$ on both sides to get $\sum_{j=0}^N|x_j|\leqslant 1$ for all $N$, giving the wanted result.
The fact that $A$ has non-empty interior is done here.