3

$$\int_{0}^{+\infty} \frac{\sin(x)}{x} e^{itx} dx = ?$$

I know the Laplace transform of sinc is $\arctan(1/t)$. However, what if $t$ is a complex number?

Mark Viola
  • 179,405
Yanhg
  • 117

3 Answers3

2

Note for $\text{Im}(t)\ge 0$ we have

$$\int_{-\infty}^\infty \frac{\sin(x)}{x}\,e^{itx}\,dx=\frac1{i2}\int_{-\infty}^\infty \frac{e^{i(t+1)x}-e^{i(t-1)}x}{x}\,dx$$

Applying the Complex Version of Frullani's Integral yields

$$\begin{align} \int_{-\infty}^\infty \frac{\sin(x)}{x}\,e^{itx}\,dx&=\frac1{i2}\int_{0}^\infty \frac{e^{i(t+1)x}-e^{i(t-1)}x}{x}\,dx\\\\ &=\frac{1}{i2}\log\left|\frac{t+1}{t-1}\right|+\frac12\left(\arctan\left(\frac{\text{Re}(t)+1}{\text{Im}(t)}\right)-\arctan\left(\frac{\text{Re}(t)-1}{\text{Im}(t)}\right)\right) \end{align}$$

Mark Viola
  • 179,405
1

In term of distributions, the Fourier transform of $\frac{\sin(\pi x)}{\pi x}$ is $1_{|\xi| < 1/2}$ and the FT of $1_{x > 0}$ is $\frac{1}{2i \pi}\frac{d}{d\xi} \log |\xi| + \frac{1}{2} \delta(\xi) $,

thus the FT of $\frac{\sin(\pi x)}{\pi x}1_{x > 0}$ is $$1_{|\xi| < 1/2} \ast (\frac{1}{2i \pi}\frac{d}{d\xi} \log |\xi| + \frac{1}{2} \delta(\xi)) = \frac{\log|\xi + 1/2| - \log|\xi - 1/2| }{2i \pi}+ \frac{1_{|\xi| < 1/2} }{2}$$

reuns
  • 77,999
  • Just curious ... how is the Dirac Delta defined on $\mathbb{C}$? That is, how does one define the distribution $\delta(\xi)$? – Mark Viola Aug 02 '17 at 19:01
  • @MarkViola You don't in general. But if you really want to, say when considering the analytic continuation of (inverse) Laplace transforms, you can define an analytic functional $\delta(z-a)= \lim_{N \to \infty}\int_{\sigma-iN}^{\sigma+iN} e^{-s(z-a)}ds$ the limit being in the sense of distributions on a space of analytic test functions. In this framework, the Laplace/Fourier transform of $e^x$ could be $\delta(z-i)$. – reuns Aug 02 '17 at 19:06
  • So, was it in that spirit that you wrote $\delta(\xi)$? I'm asking since the OP specified an interest in complex values of $t$, where $t$ was the transform variable (i.e., the OP's $t$ is your $\xi$ I beleive). – Mark Viola Aug 02 '17 at 19:11
  • @MarkViola Right, I answered to the title, the Fourier transform. Also for $\Im(t) > 0$ instead of Frullani theorem you can integrate $\int_0^\infty \sin(x) e^{-sx}dx$, which is what suggests what he wrote about $\arctan$ ? – reuns Aug 02 '17 at 20:01
  • If you want to adapt my answer, then the FT of $e^{-\sigma x}1_{x > 0}$ is $\frac{1}{\sigma+2i \pi \xi}$ and the result (up to $\omega = 2i \pi \xi$) is $1_{|\xi| < 1/2} \ast \frac{1}{\sigma+2i \pi \xi} = \arctan \ldots$. So I still think the term $\frac{1_{|\xi| < 1/2}}{2}$ appears from the branch of $\arctan$ – reuns Aug 02 '17 at 20:04
0

$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\int_{0}^{\infty}{\sin\pars{x} \over x}\,\expo{\ic tx}\,\dd x = \int_{-\infty}^{\infty}\bracks{x > 0}{\sin\pars{x} \over x}\,\expo{\ic tx} \,\dd x \\[5mm] = &\ \int_{-\infty}^{\infty}\bracks{\int_{-\infty}^{\infty}{\expo{\ic kx} \over k - \ic 0^{+}}\,{\dd k \over 2\pi\ic}} {\sin\pars{x} \over x}\,\expo{\ic tx}\,\dd x = \int_{-\infty}^{\infty}{1 \over k - \ic 0^{+}}\int_{-\infty}^{\infty} {\sin\pars{x} \over x}\,\expo{\ic\pars{k + t}x}\,\dd x\,{\dd k \over 2\pi\ic} \\[5mm] = &\ \int_{-\infty}^{\infty}{1 \over k - \ic 0^{+}}\int_{-\infty}^{\infty} \pars{{1 \over 2}\int_{-1}^{1}\expo{-\ic qx}\,\dd q} \,\expo{\ic\pars{k + t}x}\,\dd x\,{\dd k \over 2\pi\ic} \\[5mm] = &\ {1 \over 2}\int_{-\infty}^{\infty}{1 \over k - \ic 0^{+}}\int_{-1}^{1} \int_{-\infty}^{\infty} \expo{\ic\pars{k + t - q}x}\,\dd x\,\dd q\,{\dd k \over 2\pi\ic} = {1 \over 2}\int_{-\infty}^{\infty}{1 \over k - \ic 0^{+}}\int_{-1}^{1} 2\pi\,\delta\pars{k + t - q}\,\dd q\,{\dd k \over 2\pi\ic} \\[5mm] = &\ {1 \over 2\ic}\int_{-\infty}^{\infty} {\bracks{-1 < k + t < 1} \over k - \ic 0^{+}}\,\dd k = {1 \over 2\ic}\int_{-1 - t}^{1 - t}{\dd k \over k - \ic 0^{+}} \\[5mm] = &\ {1 \over 2\ic}\,\mrm{P.V.}\int_{-1 - t}^{1 - t}{\dd k \over k} + {1 \over 2\ic}\,\ic\pi\bracks{-1 - t < 0 < 1 - t} \\[5mm] & = -\,{\ic \over 2}\left\{% \bracks{1 - t < 0}\ln\pars{t - 1 \over t + 1} + \bracks{-1 - t < 0}\bracks{1 - t > 0}\ln\pars{1 - t \over 1 + t}\right. \\ &\ \left.\phantom{-\,{\ic \over 2}\left\{\right.} + \bracks{-1 - t > 0}\ln\pars{1 - t \over - 1 - t}\right\} + {\pi \over 2}\,\bracks{-1 < t < 1} \\[5mm] & = -\,{\ic \over 2}\left\{% \bracks{t > 1}\ln\pars{t - 1 \over t + 1} + \bracks{\verts{t} < 1}\ln\pars{1 - t \over 1 + t}\right. \\ &\ \left.\phantom{-\,{\ic \over 2}\left\{\right.} + \bracks{t < - 1}\ln\pars{1 - t \over - 1 - t}\right\} + {\pi \over 2}\,\bracks{-1 < t < 1} \\[5mm] = &\ \bbx{\bracks{\vphantom{\Large A}\verts{t} < 1}{\pi \over 2} + {1 \over 2}\bracks{\vphantom{\Large A}\verts{t} \not= 1} \ln\pars{\verts{t + 1 \over t - 1}}\,\ic} \end{align} enter image description here

Felix Marin
  • 89,464