Let $X=(X_t)_{t\geq 0}$ be a stochastic process on a stochastic basis $(\Omega,\mathcal{F},\mathcal{P},\mathbb{F}=(\mathcal{F}_t)_{t\geq 0})$. Let $\tilde{\mathbb{F}}=(\tilde{\mathcal{F}}_t)_{t\geq 0})$ be a subfiltration.
While it is (probably) not true in general that $$\int_0^tE[f(X_s)\mid \tilde{\mathcal{F}}_s]ds=E[\int_0^tf(X_s)ds\mid\tilde{\mathcal{F}}_t]$$ holds, my question is if $$\int_0^tE[(\mathcal{L}^Xf)(X_s)\mid\tilde{\mathcal{F}}_s]ds=E[\int_0^t(\mathcal{L}^Xf)(X_s)ds\mid\tilde{\mathcal{F}}_t]$$ is true where $X$ is $\mathbb{F}$-adapted and a $(\mathbb{F},\mathcal{P})$-markov process and $\mathcal{L}^X$ the generator of $X$ and $f$ an element of the domain of $\mathcal{L}^X$.