Find the general solution of $\sin^2 x = \sin^2 \theta$.
My Attempt: $$\sin^2 x = \sin^2 \theta$$ $$\sin^2 x - \sin^2 \theta=0$$ $$(\sin x + \sin \theta) (\sin x - \sin \theta)=0$$ $$(2\sin \dfrac {x+\theta}{2}.\cos \dfrac {x-\theta}{2}).(2\sin \dfrac {x-\theta}{2}.\cos \dfrac {x+\theta }{2})=0$$.
...