0

Find the general solution of $\sin^2 x = \sin^2 \theta$.

My Attempt: $$\sin^2 x = \sin^2 \theta$$ $$\sin^2 x - \sin^2 \theta=0$$ $$(\sin x + \sin \theta) (\sin x - \sin \theta)=0$$ $$(2\sin \dfrac {x+\theta}{2}.\cos \dfrac {x-\theta}{2}).(2\sin \dfrac {x-\theta}{2}.\cos \dfrac {x+\theta }{2})=0$$.

...

pi-π
  • 7,416
  • 3
    Stop here: $(\sin x + \sin \theta) (\sin x - \sin \theta)=0$. Now, $ (\sin x + \sin \theta) = 0$ or $(\sin x - \sin \theta)=0$ – Thiago Nascimento Jul 30 '17 at 01:17