0

is there any proof for the sum of cubes except induction supposition? there are some proofs using induction in below page Proving $1^3+ 2^3 + \cdots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$ using induction

Bernard
  • 175,478

2 Answers2

3

Write

$$(k+1)^4 = k^4+4k^3+6k^2+4k+1$$

or

$$(k+1)^4 -k^4 = 4k^3+6k^2+4k+1.$$

If you sum both sides from $k=1$ to $n$, the left side telescopes and you have

$$(n+1)^4 -1 = 4 \sum_{k=1}^{n} k^3 + 6\sum_{k=1}^{n} k^2 + 4\sum_{k=1}^{n} k + \sum_{k=1}^{n} 1.$$ Using known formulae for the last 3 sums gives

$$(n+1)^4 -1 = 4 \sum_{k=1}^{n} k^3 + 6 \frac{n(n+1)(2n+1)}{6}+4\frac{n(n+1)}{2}+n$$

and you can solve this equation for the remaining sum.

1

hint

begin by $$(n+1)^4=n^4+4n^3+6n^2+4n+1$$

... $$(3+1)^4=3^4+4.3^3+6.3^2+4.3+1$$ $$(2+1)^4=2^4+4.2^3+6.2^2+4.2+1$$ $$(1+1)^4=1^4+4.1^3+6.1^2+4.1+1$$

and sum to get

$$(n+1)^4=1+4S_3+6S_2+4S_1+n $$ with $$S_1=1+2+...+n=\frac {n (n+1)}{2}$$ $$S_2=1^2+2^2+...+n^2=\frac {n (n+1)(2n+1)}{6} $$

Now you can find your sum $S_3$.