Let $p_n$ the $n^\text{th}$ prime number. I mean $p_1=2,p_2=3,p_3=5,...$ now consider this series $\displaystyle \sum_{n=1}^{\infty}\frac{1}{p_n}=\frac12+\frac13+\frac15+\frac17+... $
I know $\displaystyle \sum_{n=1}^{\infty}\frac{1}{n} \to \infty$ (harmonic series)
now I am looking for a simple proof to show $$\sum_{n=1}^{\infty}\frac{1}{p_n}=\frac12+\frac13+\frac15+\frac17+... \to \infty$$ thanks in advance.