Let $V=(V, \langle\; , \; \rangle)$ denote an inner product space. Then the concept "Gramian matrix" is the function \begin{align*}V^n &\rightarrow \mathbb{R}^{n \times n} \\x &\mapsto \sum_{i,j=1}^n \langle x_i,x_j\rangle e_i e_j^\top.\end{align*}
Suppose we're interested in the two-argument version of this, namely \begin{align*}V^n \times V^n &\rightarrow \mathbb{R}^{n \times n}, \\ (x,y) &\mapsto \sum_{i,j=1}^n \langle x_i,y_j\rangle e_i e_j^\top. \end{align*}
The determinant of this matrix shows up in the definition of the dot product of multivectors.
Question. Does this function $V^n \times V^n \rightarrow \mathbb{R}^{n \times n}$ have a name and/or accepted notation, like "two-argument Gram matrix" or something like that?
Also, is there an accepted notation for it?