Prove that $\lim_{n\to 0}\frac {x^n-1}{n} = \ln x$
This expression appears while calculating the derivative of exponential function
Prove that $\lim_{n\to 0}\frac {x^n-1}{n} = \ln x$
This expression appears while calculating the derivative of exponential function
HINT:
In This Answer, I used the limit definition of the exponential function, $e^x=\lim_{n\to \infty}\left(1+\frac xn\right)^n$, along with Bernoulli's Inequality to arrive at the inequalities
$$1+x\le e^x\le \frac{1}{1-x} \tag1$$
for $x<1$.
Then defining $\log(x)$ as the inverse function of $e^x$, note that
$$\frac{x^n-1}{n}=\frac{e^{n\log(x)}-1}{n}\tag 2$$
Finally, apply $(1)$ to $(2)$.
$$\lim_{n\to0}\frac{x^n-1}n=\lim_{n\to0}\frac{e^{nt}-1}n=t\lim_{m\to0}\frac{e^{m}-1}m=ct=c\ln x$$ where $c$ is some constant, if the limit exists.
– Jul 26 '17 at 20:36