$\lim\limits_{n\to\infty} \frac{a^n}{n!}=0$
how to prove this one since L'Hospital Theorem cannot be used with factorial?
$\lim\limits_{n\to\infty} \frac{a^n}{n!}=0$
how to prove this one since L'Hospital Theorem cannot be used with factorial?
Hint. Let $N\geq |a|$, then for $n>N$, we have that \begin{align*} 0\leq \frac{|a|^n}{n!}&=\frac{|a|}{n}\cdot \frac{|a|^{n-N-1}}{(n-1)\cdots (N+1)}\cdot \frac{|a|^{N}}{N!}\\ &\leq \frac{|a|}{n}\cdot \left(\frac{|a|}{N+1}\right)^{n-N-1}\cdot \frac{|a|^{N}}{N!}\\ &\leq \frac{|a|}{n}\cdot \frac{|a|^{N}}{N!} \end{align*} then apply the Squeeze Theorem as $n\to \infty$.
Stirling: $n! \sim (\frac{n}{e})^n \sqrt{2\pi n}$
$\frac{a^n}{n!} \sim \frac{a^n e^n}{n^n\sqrt{2\pi n}} = (\frac{a\times e}{n})^n \frac{1}{\sqrt{2\pi n}} = \exp(n \ln(\frac{a\times e}{n})) \frac{1}{\sqrt{2 \pi n}} \rightarrow 0$
$$\frac{a^n}{n!} = \frac{a^k}{k!}\cdot \frac{a^{n-k}}{(k+1)\cdot(k+2)\cdots n!}\leq C\cdot\frac{a^{n-k}}{(a+1)^{n-k}}$$
for some constant $c$ and a large enough value of $k$ (i.e., a value of $k$ such that $k>a$).
One can also show by D'Alembert's criterion criterion that the series $$\sum_{n=1}^{\infty} \frac{a^n}{n!}$$ converges, so the limit of the summand must be zero.
(This is rather a funny fact than a real solution, since the technique used in the proof of the criterion can be used directly to prove that the limit is zero).
If we apply the ratio test, we find that $$ \lim_{n \to \infty}\frac{a^{n+1}}{(n+1)!}\cdot \frac{n!}{a^n} = \lim_{n \to \infty} \frac{a}{n+1} = 0 $$ Typically, we use this to deduce that $\sum \frac{a^n}{n!}$ converges. However, it is certainly enough to deduce that $\frac{a^n}{n!} \to 0$, since this is a requirement for the above convergence.
$$0<\left| \frac { { a }^{ n } }{ n! } \right| =\frac { \left| a \right| }{ 1 } \frac { \left| a \right| }{ 2 } \frac { \left| a \right| }{ 3 } ...\frac { \left| a \right| }{ m } \quad \frac { \left| a \right| }{ (m+1) } ...\frac { \left| a \right| }{ n } \le \frac { \left| { a }^{ m } \right| }{ m! } { \left( \frac { \left| a \right| }{ m+1 } \right) }^{ n-m }<\varepsilon \\ $$ for every $\forall \varepsilon >0$ and $m+1 >\left|a\right|$