I want to find the Dedekind-Zeta function of $K=\mathbb{Q}[i]$. Here is what I have done:
$$\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{(N(\mathfrak{a}))^s} = \prod_\mathfrak{p} \left(1 - \frac{1}{{ (N(\mathfrak{p}))}^s}\right)^{-1}; s>1.$$ We know that if $\mathfrak{q}$ is a prime ideal of $\mathcal{O}_K$ then $\mathfrak{q} \cap \mathbb{Z}$ is a prime ideal of $\mathbb{Z}$ which implies that $\mathfrak{q} \cap \mathbb{Z} = (p)$ for some prime $p\in \mathbb{Z}$. Also, since $p \in \mathfrak{q}$, $(p) \subseteq \mathfrak{q}$ and $N(\mathfrak{q}) \le N(p)$.
After some calculations, we end up with $(1-\cfrac{1}{N(\mathfrak{p_i})^s})^{-1} \ge (1-\cfrac{1}{N(p_i)^s})^{-1} $ where we have some prime $p_i \in \mathfrak{p_i}$ for each prime ideal $\mathfrak{p_i}$. Finally, I get
$$\prod_\mathfrak{p} \left(1 - \frac{1}{{ (N(\mathfrak{p}))}^s}\right)^{-1} \ge\prod_{p:prime}\left(1-\cfrac{1}{p^{2s}}\right)^{-1}$$.
What should I do next, am I going in the correct way? Thanks.