Here is an alternate proof where the goal was novelty. Start with
$$\sum_{j=m-1}^{n-1} (-1)^{j-m+1}
{j\choose m-1} {n\choose j+1}
\\ = n \sum_{j=m-1}^{n-1} \frac{(-1)^{j-m+1}}{j+1}
{j\choose m-1} {n-1\choose j}.$$
Observe that
$${j\choose m-1} {n-1\choose j}
= \frac{(n-1)!}{(n-1-j)! \times (m-1)! (j-m+1)!}
\\ = {n-1\choose m-1} {n-m\choose n-1-j}.$$
We get for the sum
$$n {n-1\choose m-1} \sum_{j=m-1}^{n-1}
\frac{(-1)^{j-m+1}}{j+1} {n-m\choose n-1-j}
\\ = n {n-1\choose m-1} \sum_{j=0}^{n-m}
\frac{(-1)^{j}}{j+m} {n-m\choose n-m-j}
\\ = n {n-1\choose m-1} \sum_{j=0}^{n-m}
\frac{(-1)^{j}}{j+m} {n-m\choose j}.$$
Introduce
$$f(z) = (n-m)! (-1)^{n-m} \frac{1}{z+m}
\prod_{q=0}^{n-m} \frac{1}{z-q}.$$
Then we have for $0\le j\le n-m$
$$\mathrm{Res}_{z=j} f(z)
= (n-m)! (-1)^{n-m} \frac{1}{j+m}
\prod_{q=0}^{j-1} \frac{1}{j-q}
\prod_{q=j+1}^{n-m} \frac{1}{j-q}
\\ = (n-m)! (-1)^{n-m} \frac{1}{j+m}
\frac{1}{j!} \frac{(-1)^{n-m-j}}{(n-m-j)!}
= \frac{(-1)^j}{j+m} {n-m\choose j}.$$
Now since $\lim_{R \to\infty} 2\pi R / R^{1+n-m+1}
= \lim_{R \to\infty} 2\pi / R^{n-m+1} = 0$ we have
$\mathrm{Res}_{z=\infty} f(z) = 0$ and hence
$$\sum_{j=0}^{n-m}
\frac{(-1)^{j}}{j+m} {n-m\choose j} =
- \mathrm{Res}_{z=-m} f(z)
\\ = - (n-m)! (-1)^{n-m}
\prod_{q=0}^{n-m} \frac{1}{-m-q}
= (n-m)! \prod_{q=0}^{n-m} \frac{1}{m+q}
\\ = (n-m)! \frac{(m-1)!}{n!}
= \frac{1}{n} {n-1\choose m-1}^{-1}.$$
It follows that our closed form is
$$n {n-1\choose m-1}
\times \frac{1}{n} {n-1\choose m-1}^{-1} = 1.$$