0

I am solving a limit and am stuck with finding the common denominator. This is the limit that I have:

$$\lim_{x \to 1} \left( \frac{1}{1-x} - \frac{3}{1-x^3} \right)$$

Since $x \to 1$, the limit is $\frac{1}0 - \frac{3}0$ - or $\infty - \infty$.

So, I think the next thing I need to do is find the common denominator and continue from there on.

I would very much appreciate an answer. Thank you all and have a nice day.

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149

4 Answers4

1

Hint:

This might help you.

$$1-x^3= (1-x)(1+x+x^2)$$

Siong Thye Goh
  • 149,520
  • 20
  • 88
  • 149
1

Hint: $\;1-x^3=(1-x)(1+x+x^2)\,$, then by partial fraction decomposition:

$$ \frac{1}{1-x^3} = \frac{1}{3}\left(\frac{1}{1-x}+\frac{x+2}{1+x+x^2}\right) $$

It follows that:

$$\require{cancel} \frac{1}{1-x} - \frac{3}{1-x^3} = \cancel{\frac{1}{1-x}} - \left(\cancel{\frac{1}{1-x}} + \frac{x+2}{1+x+x^2}\right) = - \,\frac{x+2}{1+x+x^2} $$

dxiv
  • 76,497
0

HINT: note that $$1-x^3=- \left( -1+x \right) \left( {x}^{2}+x+1 \right) $$ and $$\frac{1}{1-x}-\frac{3}{1-x^3}=-{\frac {x+2}{{x}^{2}+x+1}}$$ $$\frac{1}{1-x}-\frac{3}{1-x^3}=\frac{-x^3+3x-2}{(1-x)(1-x^3}=\frac{-(x+2)(x-1)^2}{(1-x)(1-x^3)}$$

0

$$\frac{1}{1-x}-\frac{3}{1-x^3}=\frac{1}{1-x}-\frac{3}{(1-x)(x^2+x+1)}=\frac{1}{1-x}\left(1-\frac{3}{x^2+x+1}\right)=\frac{1}{1-x}\left(\frac{x^2+x-2}{x^2+x+1}\right)=\frac{1}{1-x}\left(\frac{(x-1)(x+2)}{x^2+x+1}\right)=\frac{-(x+2)}{x^2+x+1}$$

dromastyx
  • 2,796