Solve the following system of mods for $x$.
$3x$ $\equiv$ $5\ (mod \ 7)$
$7x$ $\equiv$ $5\ (mod \ 15)$
This is my current work, but am stuck about 75% of the way through:
1) Find multiplicative inverse of $7\ mod\ 15 $
$7b$ ($mod$ 15) = 1 so $b$ = $13$.
$13$ * $7x$ $\equiv$ $5$ * $13$ ($mod \ 15$)
$91x$ $\equiv$ $65$ $ mod \ 15$
$x$ $\equiv$ $5$ $ mod\ 15$
2) Find multiplicative inverse of $3\ mod\ 7%$
$3b$ ($mod$ 7) = 1 so $b$ = $5$.
$5$ * $3x$ $\equiv$ $5$ * $5$ ($mod \ 7$)
$15x$ $\equiv$ $25$ $ mod \ 7$
$x$ $\equiv$ $4$ $ mod\ 7$
3) Substitution method to solve for $x$
$x$ $\equiv$ $4$ $ mod\ 7$
$x$ = $7a+4 $ $ \equiv$ $5 \ (mod \ 15)$
The answer to this problem, according to my textbook, is $x \equiv 95 (mod \ 105)$. The $105$ makes sense since its the LCM of 15 and 7. But what do I do now? Find the multiplicative inverse of 7 mod 15, so let the coefficient of $a$ be 1 and then solve for $x$?