Evaluate $$\sqrt{e\sqrt{e\sqrt{e\sqrt{e\cdots}}}}$$
My attempt:
Let $$x=\sqrt{e\sqrt{e\sqrt{e\sqrt{e\cdots}}}}$$
$$x^2=e\sqrt{e\sqrt{e\sqrt{e\cdots}}}$$
But I've no idea, how to proceed. Hope someone can point it out. Thanks.
Evaluate $$\sqrt{e\sqrt{e\sqrt{e\sqrt{e\cdots}}}}$$
My attempt:
Let $$x=\sqrt{e\sqrt{e\sqrt{e\sqrt{e\cdots}}}}$$
$$x^2=e\sqrt{e\sqrt{e\sqrt{e\cdots}}}$$
But I've no idea, how to proceed. Hope someone can point it out. Thanks.
Consider $\{x_n\}$: $x_{n+1}^2=ex_n$, $x_1=\sqrt{e}$.
Since $x_1<e$ and $$x_{n+1}-e=\frac{\sqrt{e}(x_n-e)}{\sqrt{x_n}+e}$$ by induction we get $x_n<e$ and $$x_{n+1}-x_n=\sqrt{x_n}(\sqrt{e}-\sqrt{x_n})>0.$$
Thus, there is $\lim\limits_{n\rightarrow+\infty}x_n$.
Let $\lim\limits_{n\rightarrow+\infty}x_n=x$.
Thus, $x^2=ex$, which gives $x=e$.
Let $$x=\sqrt{e\sqrt{e\sqrt{e\sqrt{e\cdots}}}}$$ Then $$x=\sqrt{ex}$$ $$\Downarrow$$ $$x^2=ex$$ $$\Downarrow$$ $$x=e$$