0

Suppose $a\sin x + b\cos x = c $ . My teacher told me that with changing variable we can solve it by this : $(c + b) t^2 - 2at + (c-b) = 0$ where $t = \tan \frac{x}{2}$ . I thought it is true always but today found a problem . When we define $\sin x$ and $\cos x$ with $\tan \frac{x}{2}$ , we should consider $\cos \frac{x}{2} \not = 0$ and $x \not = 2k\pi + \pi$ but it can be the answer of the main equation (i.e. $a\sin x + b\cos x = c $ ) ! So , that formula is incomplete ?

S.H.W
  • 4,379

2 Answers2

1

use that $$\sqrt{a^2+b^2}\left(\frac{a}{\sqrt{a^2+b^2}}\sin(x)+\frac{b}{\sqrt{a^2+b^2}}\cos(x)\right)=c$$ and $$\cos(\phi)=\frac{a}{\sqrt{a^2+b^2}}$$ $$\sin(\phi)=\frac{b}{\sqrt{a^2+b^2}}$$ therefore we get $$\sin(x+\phi)=\frac{c}{\sqrt{a^2+b^2}}$$ or you write $$2\,{\frac {a\tan \left( x/2 \right) }{1+ \left( \tan \left( x/2 \right) \right) ^{2}}}+{\frac {b \left( 1- \left( \tan \left( x/2 \right) \right) ^{2} \right) }{1+ \left( \tan \left( x/2 \right) \right) ^{2}}}=c $$ with $$\tan(x/2)=t$$ as your teacher said

Mariuslp
  • 824
0

NOte that:$${\color{Red}{a \sin x+ b \cos x=c \\ \frac{|a|}{a} \sqrt{a^2+b^2} \sin (x+\alpha)=c\\ \tan \alpha=\frac{b}{a}} }\\\sin (x+\alpha)=\frac{|a|}{a}.\frac{c}{\sqrt{a^2+b^2}}$$ This is general form

Khosrotash
  • 24,922