Let $\vec{A}:=(A_1,A_2,A_3)$ be a vector where all its components are positive real numbers. In the context of this question An integral involving error functions and a Gaussian we came across a following integral. \begin{equation} I(\vec{A}) := A_1\int\limits_0^{A_3} \frac{ \arctan\left(\frac{A_2}{\sqrt{1+A_1^2 +\xi^2}}\right)}{(1+\xi^2)\sqrt{1+A_1^2+\xi^2}} d\xi \end{equation} By performing the following transformations, firstly by substituting $\xi = \sqrt{1+A_1^2} \tan(\theta)$and then by substituting $t=\tan(\theta/2)$ we brought the quantity being sought for to the following form: \begin{eqnarray} &&I(\vec{A}) = \arctan(\frac{A_1 A_3}{\sqrt{1+A_1^2+A_3^2}}) \arctan(\frac{A_2}{\sqrt{1+A_1^2+A_3^2}})+\\ &&4 A_2\sqrt{1+A_1^2}\int\limits_0^{B} \arctan(\frac{t}{\sqrt{1+A_1^2}-A_1}) \cdot \frac{ t}{A_2^2 (1-t^2)^2 + (1+A_1^2) (1+t^2)^2} dt-\\ &&4 A_2\sqrt{1+A_1^2}\int\limits_0^{B} \arctan(\frac{t}{\sqrt{1+A_1^2}+A_1}) \cdot \frac{ t}{A_2^2 (1-t^2)^2 + (1+A_1^2) (1+t^2)^2} dt \end{eqnarray} where $B:= (-\sqrt{1+A_1^2} + \sqrt{1+A_1^2+A_3^2})/A_3$.
Now the question is how do we complete the calculation? Is the result expressed through elementary functions only and if not what kind of special functions enter the result?