$$\int_{0}^{\pi/4}\ln(1+\tan x)\,dx \\$$ using $$\int_{0}^{a}f(x)\,dx = \int_{0}^{a}f(a-x)\,dx \\$$
I got up to $\int_{0}^{\pi/4}\ln(2)-\ln(1+\tan x)\,dx \\$ but I'm not sure how to integrate this
Thanks in advance
$$\int_{0}^{\pi/4}\ln(1+\tan x)\,dx \\$$ using $$\int_{0}^{a}f(x)\,dx = \int_{0}^{a}f(a-x)\,dx \\$$
I got up to $\int_{0}^{\pi/4}\ln(2)-\ln(1+\tan x)\,dx \\$ but I'm not sure how to integrate this
Thanks in advance
You are almost there:
$$\int_0^{\pi/4}\ln(1+\tan x)dx= \int_0^{\pi/4} \left(\ln(2) - \ln(1+\tan x)\right)dx$$
$$= \int_0^{\pi/4} \ln(2) dx - \int_0^{\pi/4} \ln(1+ \tan x) dx$$
$$\Rightarrow 2\int_0^{\pi/4}\ln(1+ \tan x)dx = \int_0^{\pi/4} \ln(2) dx$$ $$\Rightarrow \int_0^{\pi/4} \ln( 1 + \tan x)dx = \frac{\ln(2)}{2}\int_0^{\pi/4} dx = \boxed{\frac{\pi \ln(2)}{8}}$$