Let $G$ be the Galois group of the splitting field of $x^5-2$ over $\mathbb{Q}$. Then
1) $G$ is cyclic
2) $G$ is non-Abelian
3) $\vert G \vert =20$
4) $G$ has an element of order $4$
Here, The splitting field of $x^5-2$ over $\mathbb{Q}$ is $\mathbb{Q}\big(\rho.2^{\frac{1}{5}}\big )$ where $\rho=e^{\frac{2\pi i}{5}}$.
Hence $\vert G \vert = \vert Gal(\mathbb{Q}\big(\rho.2^{\frac{1}{5}}\big ) : \mathbb{Q} )\vert$= $[\mathbb{Q}\big(\rho.2^{\frac{1}{5}}\big ) : \mathbb{Q} )]$=$20$
So, 3) is true.
1) is clearly false, since $G$ can be realized as a subgroup of $S_5$.
How to prove/disprove 2) and 4) ?