1

Let $G$ be the Galois group of the splitting field of $x^5-2$ over $\mathbb{Q}$. Then

1) $G$ is cyclic

2) $G$ is non-Abelian

3) $\vert G \vert =20$

4) $G$ has an element of order $4$

Here, The splitting field of $x^5-2$ over $\mathbb{Q}$ is $\mathbb{Q}\big(\rho.2^{\frac{1}{5}}\big )$ where $\rho=e^{\frac{2\pi i}{5}}$.

Hence $\vert G \vert = \vert Gal(\mathbb{Q}\big(\rho.2^{\frac{1}{5}}\big ) : \mathbb{Q} )\vert$= $[\mathbb{Q}\big(\rho.2^{\frac{1}{5}}\big ) : \mathbb{Q} )]$=$20$

So, 3) is true.

1) is clearly false, since $G$ can be realized as a subgroup of $S_5$.

How to prove/disprove 2) and 4) ?

1 Answers1

3

Hint for $1$: The extension $\mathbb{Q}(2^{1/5} )/\mathbb{Q}$ is not Galois.

Hint for $3$: Try and find the generators for $Gal(\mathbb{Q}(2^{1/5},\rho) / \mathbb{Q})$ by writing out the automorphisms. Look specifically at

$\sigma = \begin{cases} 2^{1/5} \to 2^{1/5} \\ \rho \to \rho^2 \end{cases}$

Dionel Jaime
  • 3,908