Consider $f:\mathbb{R}^2 \rightarrow \mathbb{R}$ where
$$f(x,y):=\begin{cases} \frac{x^3}{x^2+y^2} & \textit{ if } (x,y)\neq (0,0) \\ 0 & \textit{ if } (x,y)= (0,0) \end{cases} $$
If one wants to show the continuity of $f$, I mainly want to show that
$$ \lim\limits_{(x,y)\rightarrow0}\frac{x^3}{x^2+y^2}=0$$
But what does $\lim\limits_{(x,y)\rightarrow0}$ mean? Is it equal to $\lim\limits_{(x,y)\rightarrow0}=\lim\limits_{||(x,y)||\rightarrow0}$ or does it mean $\lim\limits_{x\rightarrow0}\lim\limits_{y\rightarrow0}$?
If so, how does one show that the above function tends to zero?