Show the Fourier transform $\mathcal F$ is continuous in the Schwartz space $\mathcal S(\Bbb R)$.
Use the standard $\mathcal S$-norms
$$
\|f\|_{a,b}=\sup_{x \in \Bbb R} \left| x^af^{(b)}(x)\right|, \, a,b \in \Bbb Z_+.
$$
Let $\{f_n\}$ be a sequence converging to $f$ in $\mathcal S$.
To get the result, is it sufficient to show that
$$
\lim_n \|\hat f_n\|_{a,b} = \|\hat f\|_{a,b}
$$
for any $a,b \in \Bbb Z_+$?
This post prooves the result in another way.