Let $A,B\in M_2(\mathbb{R})$ be such that $A^2+B^2+2AB=0$ and $\det A= \det B$. Our goal is to compute $\det(A^2 - B^2)$. According to the chain of comments on Art of Problem Solving, the following statements are true:
- $\det(A^2+B^2)+\det(A^2-B^2)=2(\det A^2+\det B^2)$. (Is this well known?)
- (1) $\implies \det(A^2-B^2)=0$.
- If $A,B\in M_2(\mathbb{C})$ satisfy $A^2+B^2+2AB=0$, then $AB=BA$.
- $(A+B)^2=0 \implies \det(A^2-B^2)=0$.
Can someone help me with justifying these statements?
Edit. Doug M provided an explanation for (1) in the answers. Here is an explanation for (2): $A^2+B^2+2AB=O_2 \implies A^2+B^2=-2AB$. So $\det(A^2+B^2)=4\det(AB)$. Now using (1), $\det(A^2-B^2)= 2\left(\det(A^2)-2\det(AB)+\det(B^2)\right) = 2\left((\det(A)^2-\det(B)^2\right) = 0$.