I'm quite confortable with definitions such as a derivative or an integral because i get to see why they are the way they are and that feels really natural, there is a fundamental question to be solved such as "What is the slope at a certain point of the curve" and so on... I can't see why someone would come up with the idea of a determinant, don't tell me that gives some area , I don't see why giving an area or a volume solves the kind of problems determinants do, is there a nice line of reasoning for determinants? Thank you guys !
Asked
Active
Viewed 171 times
2
-
2You'll probably find this question and its answers helpful. – Ben Grossmann Jul 12 '17 at 15:49
-
"Natural" is a rather subject term. Might be useful to add more information about what it really means. – Jul 12 '17 at 15:55
-
I would like to know what was the fundamental problem one was trying to solve when came up with that tool. – Victor Luiz Jul 12 '17 at 16:00
-
1Might be useful: Historically, determinants were used long before matrices – Jul 12 '17 at 16:03
-
2They were originally used to tackle systems of linear equations. One of the first important discoveries, if the determinant is zero, the system does not have a singular solution. Cramer's rule is an important step along the way. The shoe-lace algorithm might be one of the early linkages of matrices to areas. – Doug M Jul 12 '17 at 16:13
-
"Don't tell me that and that" is a nice invitation to think about an appropriate answer to such a grand view question. – Christian Blatter Jul 12 '17 at 16:22
-
this is a nice bit of history http://www-groups.dcs.st-and.ac.uk/history/HistTopics/Matrices_and_determinants.html – Doug M Jul 12 '17 at 16:41