Some general advice for when you're stuck on questions involving modular arithmetic is to see if falling back to the definition helps out.
$$a\equiv b\pmod{cx+d}\iff (\exists k\in\mathbb Z)\,\,\,(a=b+k(cx+d) \land cx+d\in\mathbb Z^+)\,\,\,,\,\,\,a,b,c,d\in\mathbb Z$$
Then for $a,b,c,d,k\in\mathbb Z$,
$$a=b+k(cx+d) \land cx+d\in\mathbb Z^+\implies$$
If $c=0$, then $x\in\mathbb C$.
Also, $c=0\land x\in\mathbb C\implies a\equiv b\pmod{cx+d}$.
If $c\neq 0\land a=b$, then $k=0\lor cx+d=0$
$$\implies cx+d\in\mathbb N_0\implies x=\frac{n-d}{c}\,\,\,,\,\,\,n\in\mathbb N_0$$
Also, $c\neq0\land a=b\land x=\frac{n-d}{c}\,\,\,,\,\,\,n\in\mathbb N_0\implies a\equiv b\pmod{cx+d}$.
If $c\neq 0\land a\neq b$, then $k\neq0$
$$\implies x=\frac{a-b-dk}{ck}$$
Also, $c\neq0\land a\neq b\land x=\frac{a-b-dk}{ck}\,\,\,,\,\,\,k\in\mathbb Z^*\implies a\equiv b\pmod{cx+d}$
Therefore
$$(\forall a,b,c,d\in\mathbb Z)\,\,\,a\equiv b\pmod{cx+d} \iff (c=0\land x\in\mathbb C)\lor\left(c\neq0\land\left(\left(a=b\land x=\frac{k-d}{c}\,\,\,,\,\,\,k\in\mathbb N_0\right)\lor\left(a\neq b\land x=\frac{a-b-dk}{ck}\,\,\,,\,\,\,k\in\mathbb Z^*\right)\right)\right)$$