I'm trying to solve this integral.
$$ \int_0^\infty dx' \int_{-\infty}^\infty dy' \frac{1}{((x-x')²+(y-y')² +z²)^{3/2}} $$ I wasn't able to come up with a proper substitution yet.
This integral is an attempt to solve the Potential of a point charge in the half space V := {$\textbf{r} \in \mathbb{R}^3| z \geq 0$} on the surface $\partial V$ = {$ \textbf{r} \in \mathbb{R}^3|z = 0 $} with Dirichlet Boundary Condition for the Green function with the method of images.
Where \begin{equation} \phi(\textbf{r})= \begin{cases} 0, & \textbf{r} \in \partial V, x<0\\ \Phi, & \textbf{r} \in \partial V, x\geq0 \end{cases} \end{equation}
Thanks in advance