In fluid dynamics, the vorticity transport equation can be derived by taking the curl of the Navier-Stokes equations. In 2D [$\boldsymbol \omega = (0,0,\omega)$], the vorticity transport equation can be written as \begin{align} \frac{\partial \boldsymbol\omega}{\partial t}+(\mathbf{u}\cdot\nabla)\boldsymbol\omega=\frac{1}{Re}\nabla^2\boldsymbol\omega \end{align} where the vorticity $\boldsymbol\omega$ is the curl of the velocity $\mathbf{u}$ \begin{align} \boldsymbol\omega=\nabla\times\mathbf{u} \end{align} The curl of the curl vector identity \begin{align} \nabla \times \left( \nabla \times \mathbf{A} \right) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^{2}\mathbf{A}\\\\ \nabla \times \left( \nabla \times \mathbf{u} \right) = \nabla(\nabla \cdot \mathbf{u}) - \nabla^{2}\mathbf{u} \end{align} is used together with the incompressible flow condition $\nabla\cdot\mathbf{u}=0$ to get a Poisson equation for the velocity field \begin{align} \nabla \times \boldsymbol \omega = - \nabla^{2}\mathbf{u} \end{align} This closes the system of equations for 2D incompressible flow using the vorticity-velocity formulation.
My question is how to proof, or get, the above Poisson equation from the vorticity transport equation. What I have tried is to apply the divergence operator to the whole vorticity transport equation which leads to \begin{align} \frac{\partial \nabla\cdot\boldsymbol\omega}{\partial t}+\nabla\cdot\left[(\mathbf{u}\cdot\nabla)\boldsymbol\omega\right]=\frac{1}{Re}\nabla\cdot\left(\nabla^2\boldsymbol\omega\right) \end{align} since $\nabla\cdot\boldsymbol\omega=0$ \begin{align} \nabla\cdot\left[(\mathbf{u}\cdot\nabla)\boldsymbol\omega\right]&=\frac{1}{Re}\nabla^2\left(\nabla\cdot\boldsymbol\omega\right)\\\\ \nabla\cdot\left[(\mathbf{u}\cdot\nabla)\boldsymbol\omega\right]&=0 \end{align} I guess that from the equation above somehow one can get the velocity Poisson equation, but I have not been able to solve this yet.
There is a vector identity which can be written as \begin{align} \nabla \times (\mathbf{A} \times \mathbf{B}) &\ =\ \mathbf{A}\ (\nabla \cdot \mathbf{B}) - \mathbf{B}\ (\nabla \cdot \mathbf{A}) + (\mathbf{B} \cdot \nabla) \mathbf{A} - (\mathbf{A} \cdot \nabla) \mathbf{B}\\\\ \nabla \times \left(\mathbf u \times \boldsymbol \omega \right) &= \mathbf u \left(\nabla \cdot \boldsymbol \omega\right) -\boldsymbol \omega \left(\nabla \cdot \mathbf u\right) + \left(\boldsymbol \omega \cdot \nabla \right) \mathbf u - \left(\mathbf u \cdot \nabla\right) \boldsymbol \omega \end{align} Which for 2D incompressible flow is \begin{align} \nabla \times \left(\mathbf u \times \boldsymbol \omega \right) &=- \left(\mathbf u \cdot \nabla\right) \boldsymbol \omega \end{align} So probably with the relation above the Poisson equation for the velocity field can be recovered, but I got stuck here. Any help would be very much appreciated.