Find the limit $$\lim_{x\rightarrow 0} \frac{\sin x-x}{\tan^3 x}$$
I found the limit which is $-\frac{1}{6}$ by using L'Hopital Rule. Is there another way to solve it without using the rule? Thanks in advance.
Find the limit $$\lim_{x\rightarrow 0} \frac{\sin x-x}{\tan^3 x}$$
I found the limit which is $-\frac{1}{6}$ by using L'Hopital Rule. Is there another way to solve it without using the rule? Thanks in advance.
$$\lim_{x\rightarrow 0} \frac{\sin x-x}{\tan^3 x}= \lim_{x\rightarrow 0} \frac{\sin x-x}{x^3} \underbrace{\left(\frac {x^3}{\tan^3 x}\right)}_{=1}$$
Now, let $$\mathrm L= \lim_{x\rightarrow 0} \frac{\sin x-x}{x^3}$$
Let $x=3y$, Since $x\to 0 \implies y \to 0$.
$$ \mathrm L= \lim_{y\rightarrow 0} \frac{\sin (3y)-3y}{(3y)^3}$$
\begin{align} \mathrm L &= \lim_{y\rightarrow 0} \frac{3\sin y-4\sin^3 y-3y}{27y^3}\\ &= \lim_{y\rightarrow 0}\frac{3}{27} \left(\frac{\sin y-y}{y^3}\right) -\frac{4}{27} \lim_{y\rightarrow 0}\left(\frac{\sin y}{y}\right)^3\\ &=\frac{3}{27} \cdot \mathrm L-\frac{4}{27} \end{align} $$\implies \mathrm L=-\frac{1}{6}$$
So you want to compute:
$$\lim_{x\to 0}\frac{\sin x - x}{x^3}.$$ Not sure if that makes it easier. (Certainly makes the L'Hopital calculation easier.)
– Thomas Andrews Jul 10 '17 at 16:44$$ \frac{\sin x - x}{x^3} = \frac{-\frac{1}{6}x^3 + O(x^5)}{x^3}$$
– MathematicsStudent1122 Jul 10 '17 at 17:00