Consider the recursive relation $ a_0=1, \ a_1=1 \ \ and \ \ a_{n+1}=a_n+a_{n-1} $.
Assuming that $ \ \ a=\lim |\frac{a_n}{a_{n+1}}| \ $ exists , find the limit $ \ a \ $.
Answer:
$ \ \ a=\lim |\frac{a_n}{a_{n+1}}|=\lim |\frac{a_n}{a_{n}+a_{n-1}}| $ , (since $a_{n+1}=a_n+a_{n-1}) , $
or, $ a=\lim |\frac{\frac{a_n}{a_{n-1}}}{\frac{a_n} {a_{n-1}}+1}| $
or, $ a=\frac{\lim|\frac{a_n}{a_{n-1}}|}{\lim|\frac{a_n}{a_{n-1}}+1|}=\frac{a}{\lim|\frac{a_n}{a_{n-1}}+1|}$ , (Since $ \lim |a_n /a_{n-1}|=\lim |a_{n+1}/a_n| $ ) .
Or, $ \lim|\frac{a_n}{a_{n-1}}+1|=1 $
But I can't proceed furher . Any help is really ppreciating .