We found the sine series on the interval $[0,l]$: $$x(l-x) = \frac{8l^2}{\pi^3}\sum_{n=1}^{\infty}\frac{1}{n^3}\sin\left(\frac{n \pi x}{l}\right)$$ Note that the sum includes odd terms only.
a.) Show that this series converges in $L^2$. Then, apply Parseval's equation to find the value of $\sum_{n=0}^{\infty}\frac{1}{(2n +1)^6}$.
b.) Show that this series converges pointwise. Then, plug in $x = \frac{l}{2}$ to find the value of $\sum_{n=0}^{\infty}\frac{(-1)^n}{(2n+1)^3}$.
c.) Does the series converge uniformly? Why or why not?
Attempted Solution:
a.) We have $$\Bigg| \frac{1}{n^3}\sin\left(\frac{n \pi x}{l}\right)\Bigg| \leq \frac{1}{n^3} $$ Now take $M_n = \frac{1}{n^3}$ since $\sum_{n=1}^{\infty}\frac{1}{n^3}$ is convergent then by the Weirerstrass $M$-test the original series is uniformly convergent and thus convergent in $L^2$.
(Just don't know how to apply Parseval's equation here)
b.) Since we have shown that the series is uniformly convergent then we automatically have pointwise convergence since uniform convergence implies pointwise convergence. \ \noindent Now, letting $x = \frac{l}{2}$, we have \begin{align*} &\frac{l}{2}\left(l - \frac{l}{2} \right) = \frac{8 l^2}{\pi^3}\sum_{n=1}^{\infty}\frac{1}{n^3}\sin\left(\frac{n\pi (l/2)}{l} \right)\\ &\Rightarrow \frac{l^2}{4} = \frac{8 l^2}{\pi^3}\sum_{n=1}^{\infty}\frac{1}{n^3}\sin\left(\frac{n\pi}{2}\right) \end{align*} Note that $$\sin\left(\frac{n\pi}{2}\right) = \begin{cases} 0 \ \ &\text{if} \ \ n \ \ \text{even}, n = 2m, m = 0,1,2,\ldots\\ (-1)^n \ \ &\text{if} \ \ n \ \ \text{odd}, n = 2m + 1, m = 0,1,2,\ldots \end{cases}$$ Therefore we have \begin{align*} &\frac{l^2}{4} = \frac{8 l^2}{\pi^3}\sum_{n=1}^{\infty}\frac{1}{n^3}(-1)^n\\ &\Rightarrow \sum_{n=1}^{\infty}\frac{(-1)^n}{n^3} = \frac{\pi^3}{32} \end{align*}
c.) Yes, the series converges uniformly by the Weirerstrass $M$-test, see the solution to part a.).
Please let me know if this is a sufficient solution for this problem, any comments are appreciated.