As you did, using the convolution theorem:
$$\mathscr{L}_t\left[\text{f}\left(t\right)\space*\space\text{g}\left(t\right)\right]_{\left(\text{s}\right)}=\text{F}\left(\text{s}\right)\cdot\text{G}\left(\text{s}\right)\tag1$$
So, we get:
$$\mathscr{L}_t\left[\int_0^t\frac{\text{f}\left(\tau\right)}{\sqrt{t-\tau}}\space\text{d}\tau\right]_{\left(\text{s}\right)}=\mathscr{L}_t\left[\text{f}\left(t\right)\space*\space\frac{1}{\sqrt{t}}\right]_{\left(\text{s}\right)}=\text{F}\left(\text{s}\right)\cdot\frac{\sqrt{\pi}}{\sqrt{\text{s}}}=$$
$$\mathscr{L}_t\left[\text{T}\cdot\sqrt{2\text{g}}\right]_{\left(\text{s}\right)}=\text{T}\cdot\sqrt{2\text{g}}\cdot\mathscr{L}_t\left[1\right]_{\left(\text{s}\right)}=\frac{\text{T}\cdot\sqrt{2\text{g}}}{\text{s}}\tag2$$
So, we get:
$$\text{F}\left(\text{s}\right)\cdot\frac{\sqrt{\pi}}{\sqrt{\text{s}}}=\frac{\text{T}\cdot\sqrt{2\text{g}}}{\text{s}}\space\Longleftrightarrow\space\text{F}\left(\text{s}\right)=\frac{1}{\sqrt{\text{s}}}\cdot\frac{\text{T}\cdot\sqrt{2\text{g}}}{\sqrt{\pi}}\tag3$$
And the inverse Laplace transform:
$$\mathscr{L}_\text{s}^{-1}\left[\frac{1}{\sqrt{\text{s}}}\right]_{\left(t\right)}=\frac{1}{\sqrt{\pi}\cdot\sqrt{t}}\tag4$$
So, we get:
$$\text{f}\left(t\right)=\frac{1}{\sqrt{\pi}\cdot\sqrt{t}}\cdot\frac{\text{T}\cdot\sqrt{2\text{g}}}{\sqrt{\pi}}=\frac{\text{T}\cdot\sqrt{2\text{g}}}{\pi}\cdot\frac{1}{\sqrt{t}}\tag5$$