$$|u{\cdot}v| \leq ||u||||v|| \tag{1}$$ I tried to derive the above.
Expand the LHS: $$|u{\cdot}v| = \left|\sum_{i=1}^n a_i + b_i\right| \tag{2}$$
Which can be rewritten as: $$|u{\cdot}v| = \left|\sum_{i=1}^n a_i + \sum_{i=1}^n b_i\right| \tag{3}$$
The RHS of $(1)$ can be written as: $$||u||||v|| = \sqrt{\sum_{i=1}^n a_i^2} \times \sqrt{\sum_{i=1}^n b_i^2} \tag{4}$$
Taking the square of $(4)$: $$||u||^2||v||^2 = \sum_{i=1}^n a_i^2 \times \sum_{i=1}^n b_i^2$$
From $(3)$: $$u{\cdot}v = \sum_{i=1}^n a_i + \sum_{i=1}^n b_i \tag{3.1}$$
Square $(3.1)$: $$(u{\cdot}v)^2 = \left(\sum_{i=1}^n {a_i}\right)^2 + 2\sum_{i=1}^n {a_i}{\cdot}\sum_{i=1}^n b_i + \left(\sum_{i=1}^n b_i\right)^2 \tag{5}$$
Now, $X^2 \lt Y^2 \implies |Y| \gt |X| \tag{*}$
Rewriting $(4)$: $$||u||^2||v||^2 = \sum_{i=1}^n a_i{\cdot}a_i \times \sum_{i=1}^n b_i{\cdot}b_i \tag{4.1}$$
Rewriting $(5)$: $$(u{\cdot}v)^2 = \sum_{i=1}^n {a_i}\sum_{i=1}^n {a_i} + 2\sum_{i=1}^n {a_i}{\cdot}\sum_{i=1}^n b_i + \sum_{i=1}^n b_i\sum_{i=1}^n b_i \tag{5.1}$$
It seems trivial that $(5.1) \le (4.1)$ which from $(*) \implies |u{\cdot}v| \geq ||u||||v||$ directly contradicting the theorem.
What am I doing wrong? Where did I misstep (and please properly derive the proof).
$(*)$ this is trivial and left as a proof for the reader. ;)