3

I would like to show that $\lim_{n \to \infty} \frac{n}{2^n} \sum_{k=1}^n \frac{2^k}{k} = 2$

I have seen proofs that $\sum_{k=1}^n \frac{2^k}{k} \sim \frac{2^{n+1}}{n}$ using the Euler-Maclaurin method but instead I tried with the squeeze theorem.

For one side I showed that

$$\frac{n}{2^n} \sum_{k=1}^n \frac{2^k}{k} > \frac{n}{2^n} \sum_{k=1}^n \frac{2^k}{n} = \frac{1}{2^n}\sum_{k=1}^n 2^k = \frac{2^{n+1} - 2}{2^n} = 2 - \frac{1}{2^{n-1}}$$

and the limit on this side is $2$.

Now I am having trouble finding an upper bound that converges to $2$.

Thank you.

Jack D'Aurizio
  • 353,855
SAS
  • 1,066
  • 9
  • 18

3 Answers3

5

It is enough to apply the Stolz-Cesàro theorem. By setting $A_n=\sum_{k=1}^{n}\frac{2^k}{k}$ and $B_n=\frac{2^n}{n}$ we have

$$ \frac{A_{n}-A_{n-1}}{B_n-B_{n-1}} = \frac{\frac{2^n}{n}}{\frac{2^n}{n}-\frac{2^{n-1}}{n-1}} = \frac{1}{1-\frac{1}{2}\cdot\frac{n}{n-1}}\tag{1}$$ hence $$ \lim_{n\to +\infty}\frac{A_{n}-A_{n-1}}{B_n-B_{n-1}}=2 \tag{2}$$ and $$ \lim_{n\to +\infty}\frac{n A_n}{2^n} = 2 \tag{3} $$ as wanted.

Jack D'Aurizio
  • 353,855
3

$$ \begin{align} \lim_{n\to\infty}\frac{n}{2^n}\sum_{k=1}^n\frac{2^k}{k} &=\lim_{n\to\infty}\sum_{k=0}^{n-1}\frac1{1-\frac kn}2^{-k}\tag{1}\\ &=\sum_{k=0}^\infty2^{-k}\tag{2}\\[6pt] &=2\tag{3} \end{align} $$ Explanation:
$(1)$: substitute $k\mapsto n-k$
$(2)$: Dominated Convergence $\left(\frac1{1-\frac kn}\le k+1\text{ when }n\ge k+1\right)$
$(3)$: geometric series

robjohn
  • 345,667
1

Note that

$$\frac{n}{2^n}\sum_{k=1}^n \frac{2^k}{k} = \frac{n}{2^n}\sum_{k=0}^{n-1} \frac{2^{n-k}}{n-k} = \sum_{k=0}^{n-1} \frac{1}{2^k} + \sum_{k=1}^{n-1} \frac{k}{2^k(n-k)}.$$

The limit of the first sum on the RHS is $\sum_{k=0}^\infty 2^{-k} = 2$ and we can show that the limit of the second sum is $0$ giving the result

$$\lim_{n \to \infty}\frac{n}{2^n}\sum_{k=1}^n \frac{2^k}{k}= 2.$$

To show that

$$\lim_{n \to \infty} \sum_{k=1}^{n-1} \frac{k}{2^k(n-k)} = 0, $$

we have, since $2^k > k(k-1),$

$$0 < \sum_{k=1}^n \frac{k}{2^k(n-k)}= \frac{1}{2(n-1)}+ \sum_{k=2}^{n-1} \frac{k}{2^k(n-k)} \\ < \frac{1}{2(n-1)}+ \sum_{k=2}^{n-1} \frac{1}{(k-1)(n-k)} \\ = \frac{1}{n-1} \left(\frac{1}{2} + \sum_{k=2}^{n-1}\frac{1}{k-1} + \sum_{k=2}^{n-1}\frac{1}{n-k} \right) \\ \frac{1}{n-1} \left(\frac{1}{2} + 2\sum_{k=1}^{n-2}\frac{1}{k} \right)$$

Clearly the RHS converges to $0$ as $n \to \infty$ since a harmonic sum is of order $\log n$.

RRL
  • 90,707