Is there a real matrix $3 \times 3$ Matrix $B$ such that $B^2=A$ where $$A=\begin{bmatrix} 1 & 0& 0\\ 0 & -1 & 0\\ 0 & 0 & -1 \end{bmatrix}$$
I have written $A$ as
$$A=C-I$$ where
$$C= \begin{bmatrix} 2 & 0& 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$$
So $$B^2+I=C$$ and obviously
$$Det(B^2+I)=0$$
Any help here?