$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Note that $\ds{\,\mrm{sinc}:\mathbb{R} \to \mathbb{R}}$ is an even function such that $\ds{\,\mrm{sinc}'}$ is an odd function, $\ds{\,\mrm{sinc}''}$ is an $\ds{\color{#f00}{even}}$ function, $\ds{\,\mrm{sinc}'''}$ is an odd function and so on.
$\ds{\,\mrm{sinc}\pars{x} =
\left\{\begin{array}{lcl}
\ds{\sin\pars{x} \over x} & \mbox{if} & \ds{x \not = 0}
\\
\ds{1} & \mbox{if} & \ds{x = 0}
\end{array}\right.}$
\begin{align}
\lim_{x \to 0}\bracks{\sin\pars{x} \over x}^{1/\bracks{1-\cos\pars{x}}} & =
\exp\pars{\lim_{x \to 0}{\ln\pars{\mrm{sinc}\pars{x}} \over 1 - \cos\pars{x}}} =
\exp\pars{\lim_{x \to 0}{{\mrm{sinc}'\pars{x}} \over \sin\pars{x}\,\mrm{sinc}\pars{x}}}
\\[5mm] & =
\exp\pars{\lim_{x \to 0}{{\mrm{sinc}'\pars{x}} \over \sin\pars{x}}} =
\exp\pars{\lim_{x \to 0}{{\mrm{sinc}''\pars{x}} \over \cos\pars{x}}}
\\[5mm] & =
\exp\pars{\lim_{x \to 0}{\mrm{sinc}''\pars{x}}} =
\exp\pars{\lim_{x \to 0}\bracks{-\,{1 \over 3} + {x^{2} \over 10} + \,\mrm{O}\pars{x^{4}}}}
\\[5mm] & =
\bbx{\expo{-1/3}} \approx 0.7165
\end{align}